login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079387
Costé prime expansion of sqrt(3) - 1.
3
2, 3, 3, 7, 5, 7, 3, 37, 7, 3, 149, 19, 41, 17, 7, 3, 11, 2, 11, 17, 23, 19, 11, 5, 3, 5, 3, 3, 5, 2, 5, 2, 23, 7, 13, 13, 19, 37, 7, 41, 29, 11, 2, 11, 3, 3, 7, 7, 3, 23, 7, 19, 11, 11, 17, 11, 7, 5, 7, 5, 5, 3, 5, 2, 5, 7, 19, 31, 19, 17, 7, 5, 11, 3, 3, 3, 103, 853, 211, 23, 19, 17, 11, 7, 5
OFFSET
0,1
COMMENTS
For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).
LINKS
A. Costé, Sur un système fibré lié à la suite des nombres premiers, Exper. Math., 11 (2002), 383-405.
MAPLE
Digits := 200: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y, i, t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1), p]; y := p*y-1; od; t1; end; F(sqrt(3)-1);
MATHEMATICA
$MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[Sqrt[3] - 1] (* G. C. Greubel, Jan 20 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 16 2003
EXTENSIONS
More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003
STATUS
approved