login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Costé prime expansion of Pi - 3.
28

%I #23 Aug 07 2019 21:03:06

%S 11,2,11,5,5,2,5,3,17,11,3,3,11,3,3,11,5,3,23,7,5,97,29,37,107,127,29,

%T 17,409,127,11,29,5,67,19,43,31,19,103,59,29,7,3,11,11,5,47,29,11,3,5,

%U 5,3,17,5,29,11,3,3,3,3,5,5,61,151,58889,1877,983,757,163

%N Costé prime expansion of Pi - 3.

%C For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

%C Costé prime expansion = Engel expansion where all terms must be primes (cf. A006784).

%H G. C. Greubel, <a href="/A079366/b079366.txt">Table of n, a(n) for n = 0..2000</a>

%H A. Costé, <a href="http://www.emis.de/journals/EM/expmath/volumes/11/11.3/Coste383_405.pdf">Sur un système fibré lié à la suite des nombres premiers</a>, Exper. Math., 11 (2002), 383-405.

%H <a href="/index/El#Engel">Index entries for sequences related to Engel expansions</a>

%p Digits := 200: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 50 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(Pi-3);

%t $MaxExtraPrecision = 40; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 70, i++, AppendTo[t1, p = P[y]]; y = p*y-1]; t1]; F[Pi-3] (* _Jean-François Alcover_, Dec 16 2013, translated from Maple *)

%Y Cf. A079367, A079368. Also A079369-A079389.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Feb 15 2003