login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A079248
Sum of q in all pairs (p,q), 0 <= p < q, p+q divides n.
2
1, 3, 6, 10, 13, 23, 23, 36, 41, 55, 52, 87, 71, 102, 110, 136, 118, 184, 146, 217, 204, 241, 211, 335, 260, 333, 328, 410, 331, 512, 377, 528, 482, 562, 512, 743, 533, 699, 666, 853, 652, 970, 716, 985, 927, 1018, 853, 1311, 948, 1252, 1124, 1367, 1081, 1578
OFFSET
1,2
COMMENTS
Equals row sums of triangle A143444 (the inverse Mobius transform of a diagonalized matrix of A001318). - Gary W. Adamson, Aug 15 2008
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
FORMULA
Inverse Moebius transform of A001318.
G.f.: Sum_{n>1} x^n*(1+x^n+x^(2*n))/(1-x^n)/(1-x^(2*n))^2.
EXAMPLE
There are 7 pairs (p,q), 0 <= p < q, such that p+q divides 6: (0,1), (0,2), (0,3), (0,6), (1, 2), (1, 5), (2, 4); thus a(6) = 1+2+3+6+2+5+4 = 23.
MATHEMATICA
Table[Total[Select[Subsets[Range[0, n], {2}], Divisible[n, Total[#]]&][[All, 2]]], {n, 60}] (* Harvey P. Dale, Oct 06 2019 *)
PROG
(PARI) a(n) = {my(d = divisors(n)); 1 + sum(i = 2, #d, binomial(d[i] + 1, 2) - binomial(d[i]\2 + 1, 2))} \\ David A. Corneth, Oct 06 2019
CROSSREFS
Cf. A143444. - Gary W. Adamson, Aug 15 2008
Sequence in context: A128039 A027428 A136850 * A280774 A083505 A099588
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Feb 03 2003
STATUS
approved