login
a(n) = floor(1/(n-1) * Sum_{k=1..n-1} a(k)^(n/k)), given a(0)=1, a(1)=2, a(2)=5.
3

%I #5 Jun 06 2024 13:42:46

%S 1,2,5,9,19,41,87,185,392,831,1762,3735,7923,16810,35678,75750,160878,

%T 341780,726323,1543984,3283096,6983143,14857421,31619882,67313293,

%U 143339183,305318041,650524459,1386432629,2955686825,6302941044

%N a(n) = floor(1/(n-1) * Sum_{k=1..n-1} a(k)^(n/k)), given a(0)=1, a(1)=2, a(2)=5.

%e a(4)=19 since 19 = floor[(1/3){2^(4/1) + 5^(4/2) + 19^(4/3)}].

%Y Cf. A079116 - A079121.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 27 2002

%E Definition corrected by _Georg Fischer_, Jun 06 2024