This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079101 A repetition-resistant sequence. 13
 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = 0 or 1, chosen so as to maximize the number of different subsequences that are formed. a(n+1)=1 if and only if (a(1),a(2),...,a(n),0), but not (a(1),a(2),...,a(n),1), has greater length of longest repeated segment than (a(1),a(2),...,a(n)) has. In Feb, 2003, Alejandro Dau solved Problem 3 on the Unsolved Problems and Rewards website, thus establishing that every binary word occurs infinitely many times in this sequence. Klaus Sutmer remarks (Jun 26 2006) that this sequence is very similar to the Ehrenfeucht-Mycielski sequence A007061. Both sequences have every finite binary word as a factor; in fact, essentially the same proof works for both sequences. LINKS Peter J. C. Moses, Table of n, a(n) for n = 1..10000 C. Kimberling, Unsolved Problems and Rewards. C. Kimberling, Problem 2289, Crux Mathematicorum 23 (1997) 501. EXAMPLE a(7)=1 because (0,1,0,0,0,1,0) has repeated segment (0,1,0) of length 3, whereas (0,1,0,0,0,1,1) has no repeated segment of length 3. CROSSREFS Cf. A079136, A079335, A079336, A079337, A079338, A007061. Sequence in context: A134667 A117943 A096268 * A076478 A091444 A091447 Adjacent sequences:  A079098 A079099 A079100 * A079102 A079103 A079104 KEYWORD nonn AUTHOR Clark Kimberling, Jan 03 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 05:15 EST 2018. Contains 318052 sequences. (Running on oeis4.)