login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of numbers < n having in binary representation the same number of 0's as n.
3

%I #18 Feb 15 2014 02:37:47

%S 0,0,1,0,1,2,2,0,1,2,3,3,4,5,3,0,1,2,4,3,5,6,6,4,7,8,7,9,8,9,4,0,1,2,

%T 5,3,6,7,10,4,8,9,11,10,12,13,10,5,11,12,14,13,15,16,11,14,17,18,12,

%U 19,13,14,5,0,1,2,6,3,7,8,15,4,9,10,16,11,17,18,20,5,12,13,19,14,20,21,21,15

%N Number of numbers < n having in binary representation the same number of 0's as n.

%C a(n) = #{m : m < n and A023416(m) = A023416(n)};

%C a(2^k - 1) = k - 1; a(2^k) = 0; a(2^k + 1) = 1.

%H Reinhard Zumkeller, <a href="/A079070/b079070.txt">Table of n, a(n) for n = 1..10000</a>

%e n = 12 -> '1100': A023416(12) = 2 therefore

%e a(12) = #{4 ->'100', 9 ->'1001', 10 ->'1010'} = 3;

%e n = 13 -> '1101': A023416(13) = 1 therefore

%e a(13) = #{2 ->'10', 5 ->'101', 6 ->'110', 11 ->'1011'} = 4.

%t dcn[n_]:=Count[Range[n-1],_?(DigitCount[#,2,0]==DigitCount[ n,2,0]&)]; Array[dcn,90] (* _Harvey P. Dale_, Jun 11 2011 *)

%o (Haskell)

%o import Data.List (elemIndices)

%o a079070 n = length $ elemIndices (a023416 n) $ map a023416 [1..n-1]

%o -- _Reinhard Zumkeller_, Jun 16 20011

%Y Cf. A068076, A079071, A079072, A007088, A023416.

%K nonn,base,look

%O 1,6

%A _Reinhard Zumkeller_, Dec 21 2002