login
Suppose p and q = p+14 are primes. Define the difference pattern of (p,q) to be the successive differences of the primes in the range p to q. There are 15 possible difference patterns, namely [14], [2,12], [6,8], [8,6], [12,2], [2,4,8], [2,6,6], [2,10,2], [6,2,6], [6,6,2], [8,4,2], [2,4,6,2], [2,6,4,2], [2,2,4,2,4], [2,4,2,4,2]. Sequence gives smallest value of p for each difference pattern, sorted by magnitude.
2

%I #3 Oct 15 2013 22:31:49

%S 3,5,17,23,29,47,83,89,113,137,149,197,359,509,1997

%N Suppose p and q = p+14 are primes. Define the difference pattern of (p,q) to be the successive differences of the primes in the range p to q. There are 15 possible difference patterns, namely [14], [2,12], [6,8], [8,6], [12,2], [2,4,8], [2,6,6], [2,10,2], [6,2,6], [6,6,2], [8,4,2], [2,4,6,2], [2,6,4,2], [2,2,4,2,4], [2,4,2,4,2]. Sequence gives smallest value of p for each difference pattern, sorted by magnitude.

%e p=1997, q=2011 has difference pattern [2,4,8] and {1997,1999,2003,2011} is the corresponding consecutive prime 4-tuple.

%Y A022006(1)=5, A022007(1)=7, A078847(1)=17, A078851(1)=19, A078946(1)=17, A078854(1)=23, A078948(1)=29, A078857(1)=47, A031932(1)=113, A078849(1)=149.

%Y Cf. A079016-A079024.

%K fini,full,nonn

%O 1,1

%A _Labos Elemer_, Jan 24 2003