login
Least prime p introducing prime-difference pattern {d, 2*d, 4*d, 8*d}, where d = 2*n, i.e., {p, p+2*n, p+6*n, p+14*n, p+30*n} are consecutive primes.
4

%I #10 Feb 11 2021 02:38:39

%S 2237,1197739,8052641,18365693,151738897,196061237,946120169,

%T 15367934161,36116700523,49526343773

%N Least prime p introducing prime-difference pattern {d, 2*d, 4*d, 8*d}, where d = 2*n, i.e., {p, p+2*n, p+6*n, p+14*n, p+30*n} are consecutive primes.

%e For n=4, d = 2*n = 8, d-pattern = {8, 16, 32, 64}, a(6)=18365693, first corresponding prime 5-tuplet is {18365693, 18365701, 18365717, 18365729, 18365793}.

%Y Cf. A079011, A079012.

%K nonn,more

%O 1,1

%A _Labos Elemer_, Jan 21 2003

%E a(8)-a(10) from _Jinyuan Wang_, Feb 11 2021