%I
%S 1,1,1,1,2,1,2,1,1,3,0,5,0,3,1,1,4,2,8,5,8,2,4,1,1,5,5,10,
%T 15,11,15,10,5,5,1,1,6,9,10,30,6,41,6,30,10,9,6,1,1,7,14,7,
%U 49,14,77,29,77,14,49,7,14,7,1,1,8,20,0,70,56,112,120,125,120,112,56,70,0,20,8,1
%N Triangle read by rows: let f(x) = x/(1xx^2); nth row gives coefficients of denominator polynomial of nth derivative f(x)^(n), with highest powers first, for n >= 0.
%F f(x)^(n), for n=0, 1, 2, 3, 4, ..., where f(x)= x/(1xx^2).
%F G.f.: G(0)/(2*x)  1/x  2  2*x + 2*x^2 , where G(k)= 1 + 1/( 1  (1+xx^2)*x^(2*k+1)/((1+xx^2)*x^(2*k+1) + 1/G(k+1) )); (continued fraction).  _Sergei N. Gladkovskii_, Jul 06 2013
%e Triangle begins:
%e 1, 1, 1;
%e 1, 2, 1, 2, 1;
%e 1, 3, 0, 5, 0, 3, 1;
%e ...
%Y See A084610 for another version of this triangle.
%K sign,tabf
%O 0,5
%A _Mohammad K. Azarian_, Jan 12 2003
%E Edited by _N. J. A. Sloane_, Jan 15 2011
