Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 23 2024 07:25:48
%S 1,2,3,2,5,3,7,2,1,5,11,3,13,7,3,2,17,2,19,5,1,11,23,3,1,13,3,7,29,3,
%T 31,2,1,17,1,2,37,19,3,5,41,2,43,11,5,23,47,3,1,2,3,13,53,3,11,7,3,29,
%U 59,3,61,31,7,2,1,2,67,17,1,2,71,2,73,37,5,19,1,3,79,5,1,41,83,2,5,43
%N Greatest prime factor of n also contained as binary substring in binary representation of n; a(n)=1, if no such factor exists.
%C a(n) <= min{A078833(n), A006530(n)};
%C for n>1: a(n) = n iff n is prime.
%C a(A100484(n)) = A000040(n); a(A100368(n)) = A006530(A100368(n)). [_Reinhard Zumkeller_, Sep 19 2011]
%H Reinhard Zumkeller, <a href="/A078834/b078834.txt">Table of n, a(n) for n = 1..10000</a>
%e n=15=3*5 has two factors; only '11'=3 is contained in '1111'=15, therefore a(15)=3.
%t a[n_] := Module[{bn, pp, sel}, bn = IntegerDigits[n, 2]; pp = FactorInteger[n][[All, 1]]; sel = Select[pp, MatchQ[bn, {___, Sequence @@ IntegerDigits[#, 2], ___}] &]; If[sel == {}, 1, Max[sel]]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Aug 13 2013 *)
%o (Haskell)
%o import Numeric (showIntAtBase)
%o import Data.List (find, isInfixOf)
%o import Data.Maybe (fromMaybe)
%o a078834 n = fromMaybe 1 $ find (\p -> showIntAtBase 2 ("01" !!) p ""
%o `isInfixOf` showIntAtBase 2 ("01" !!) n "") $
%o reverse $ a027748_row n
%o -- _Reinhard Zumkeller_, Sep 19 2011
%Y Cf. A078833, A078822, A007088, A006530.
%K nonn,base,nice
%O 1,2
%A _Reinhard Zumkeller_, Dec 08 2002