|
|
A078799
|
|
Sum of square displacements over all self-avoiding walks on square lattice trapped after n steps.
|
|
1
|
|
|
1, 6, 35, 150, 627, 2318, 8400, 28624, 96049, 311002, 994899, 3111570, 9638347, 29398762, 88985840, 266359752, 792360385, 2337329116, 6859721431
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
7,2
|
|
COMMENTS
|
The mean squared displacement is given by a(n)/A077482(n) See also "Average Euclidean and Squared End Point Distance" at link
|
|
LINKS
|
Table of n, a(n) for n=7..25.
Hugo Pfoertner, Results for the 2D Self-Trapping Random Walk
|
|
EXAMPLE
|
a(9)=35 because the A077482(9)=11 different self-trapping walks stop at 5*(0,1)->d^2=1, 2*(1,2)->d^2=5, 2*(2,1)->d^2=5, (-1,0)->d^2=1 (3,0)->d^2=9. a(9)=5*1+2*5+2*5+1+9=35 See "Enumeration of all short self-trapping walks" at link
|
|
PROG
|
FORTRAN program for distance counting available at link
|
|
CROSSREFS
|
Cf. A077482, A078797, A078800 (corresponding Manhattan distance sum).
Sequence in context: A132657 A161784 A027985 * A203288 A026957 A026987
Adjacent sequences: A078796 A078797 A078798 * A078800 A078801 A078802
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Hugo Pfoertner, Dec 26 2002
|
|
STATUS
|
approved
|
|
|
|