login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = prime(2*n*(n+1)+1).
1

%I #19 Sep 08 2022 08:45:08

%S 2,11,41,97,179,283,439,617,829,1087,1381,1697,2081,2467,2909,3433,

%T 3929,4517,5119,5801,6481,7237,8059,8863,9739,10663,11701,12659,13729,

%U 14867,15973,17239,18443,19843,21179,22549,23971,25541,27043,28657

%N a(n) = prime(2*n*(n+1)+1).

%C Central elements of odd-length rows of the triangle of primes:

%C . 2,

%C . 3, 5,

%C . 7, 11, 13,

%C . 17, 19, 23, 29,

%C . 31, 37, 41, 43, 47,

%C . 53, 59, 61, 67, 71, 73, etc.

%C The sum of the reciprocals of the terms converges by comparison with sum_{n>=1} 1/n^2, since 1/a(n) < 1/(2n(n+1)+1) < 1/n^2. The limit is about 0.6471.

%H Vincenzo Librandi, <a href="/A078746/b078746.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A000040(A001844(n)). - _David James Sycamore_, Aug 01 2018

%t Table[Prime[2n(n+1)+1],{n,0,40}] (* _Harvey P. Dale_, May 02 2012 *)

%o (PARI) triprimes(n) = { sr = 0; for(j= 1,n, x = 2*j*(j-1) + 1; z = prime(x); sr+=1.0/z; print1(z" "); ); print(); print(sr); }

%o (Magma) [NthPrime(2*n*(n + 1)+1): n in [0..50]]; // _Vincenzo Librandi_, Jun 08 2016

%Y Cf. A000040, A078721, A001844.

%K nonn,easy

%O 0,1

%A _Cino Hilliard_, Dec 21 2002

%E Edited by _Dean Hickerson_, Dec 23 2002