login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of generalized Stirling numbers S_{3,3}(n,k) read by rows (n>=1, 3<=k<=3n).
17

%I #40 Oct 16 2023 11:28:04

%S 1,6,18,9,1,36,540,1242,882,243,27,1,216,13608,94284,186876,149580,

%T 56808,11025,1107,54,1,1296,330480,6148872,28245672,49658508,41392620,

%U 18428400,4691412,706833,63375,3285,90,1,7776,7954848,380841264,3762380016,13062960720

%N Triangle of generalized Stirling numbers S_{3,3}(n,k) read by rows (n>=1, 3<=k<=3n).

%C The sequence of row lengths for this array is [1,4,7,10,..]= A016777(n-1), n>=1.

%C The g.f. for the k-th column, (with leading zeros and k>=3) is G(k,x)= x^ceiling(k/3)*P(k,x)/product(1-fallfac(p,3)*x,p=3..k), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := sum(A089517(k,m)*x^m,m=0..kmax(k)), k>=3, with kmax(k) := A004523(k-3)= floor(2*(k-3)/3)= [0,0,1,2,2,3,4,4,5,...]. For the recurrence of the G(k,x) see A089517. _Wolfdieter Lang_, Dec 01 2003

%C For the computation of the k-th column sequence see A090219.

%C Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_3 (the disjoint union of n copies of the complete graph K_3). An example is given below. - _Peter Bala_, Aug 15 2013

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://arXiv.org/abs/quant-ph/0212072">The Boson Normal Ordering Problem and Generalized Bell Numbers</a>

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027,2004.

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://dx.doi.org/10.1016/S0375-9601(03)00194-4">The general boson normal ordering problem</a>, Phys. Lett. A 309 (2003) 198-205.

%H P. Codara, O. M. D’Antona, P. Hell, <a href="http://arxiv.org/abs/1308.1700">A simple combinatorial interpretation of certain generalized Bell and Stirling numbers</a> arXiv:1308.1700v1 [cs.DM]

%H A. Dzhumadildaev and D. Yeliussizov, <a href="http://arxiv.org/abs/1408.6764v1">Path decompositions of digraphs and their applications to Weyl algebra</a>, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]

%H Askar Dzhumadil’daev and Damir Yeliussizov, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p10">Walks, partitions, and normal ordering</a>, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.

%H W. Lang, <a href="/A078741/a078741.txt">First 6 rows</a>.

%F a(n, k) = (((-1)^k)/k!)*Sum_{p = 3..k} (-1)^p* binomial(k, p)*fallfac(p, 3)^n, with fallfac(p, 3) := A008279(p, 3) = p*(p-1)*(p-2); 3 <= k <= 3*n, n >= 1, else 0. From eq.(19) with r = 3 of the Blasiak et al. reference.

%F E^n = Sum_{k = 3..3*n} a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^3d^3/dx^3.

%F The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k >= 0} (k*(k-1)*(k-2))^n*x^k/k!. - _Peter Bala_, Aug 15 2013

%e From _Peter Bala_, Aug 15 2013: (Start)

%e The table begins

%e n\k | 3 4 5 6 7 8 9 10 11 12

%e = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

%e 1 | 1

%e 2 | 6 18 9 1

%e 3 | 36 540 1242 882 243 27 1

%e 4 | 216 13608 94284 186876 149580 56808 11025 1107 54 1

%e ...

%e Graph coloring interpretation of T(2,3) = 6:

%e The graph 2K_3 is 2 copies of K_3, the complete graph on 3 vertices:

%e o b o e

%e / \ / \

%e o---o o---o

%e a c d f

%e The six 3-colorings of 2K_3 are ad|be|cf, ad|bf|ce, ae|bd|cf, ae|bf|cd, af|bd|ce, and af|be|cd. (End)

%t a[n_, k_] := (-1)^k*Sum[(-1)^p*((p-2)*(p-1)*p)^n*Binomial[k, p], {p, 3, k}]/k!; Table[a[n, k], {n, 1, 6}, {k, 3, 3*n}] // Flatten (* _Jean-François Alcover_, Dec 04 2013 *)

%Y Row sums give A069223. Cf. A078739.

%Y The column sequences (without leading zeros) are A000400 (powers of 6), 18*A089507, 9*A089518, A089519, etc.

%Y A089504, A069223 (row sums), A090212 (alternating row sums).

%Y A078740, A090214.

%K nonn,tabf,easy

%O 1,2

%A _N. J. A. Sloane_, Dec 21 2002