OFFSET

1,2

COMMENTS

Inverse Moebius transform of A068068. Number of elements in the set {(x,y): x is odd, x|n, y|n, gcd(x,y)=1}.

The number of Pythagorean points (x,y), 0 < x < y, located on the hyperbola y = 2n(x-n)/(x-2n) and having "excess" x+y-z = 2n. - Seppo Mustonen, Jun 07 2005

a(n) is the number of Pythagorean triangles with radius of the inscribed circle equal to n. For number of primitive Pythagorean triangles having inradius n, see A068068(n). - Ant King, Mar 06 2006

Number of distinct L-shapes of thickness n where the L area equals the rectangular area that it "contains". Visually can be thought as those areas of A156688 (surrounded by equal border of thickness n: 2xy = (x+2n)(y+2n), x and y positive integers) where both x and y are even, so they can be split into L-shapes. So L-shapes have formula: 2xy = (x+n)(y+n). - Juhani Heino, Jul 23 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Seppo Mustonen, Visualization and characterization of Pythagorean triples [Local copy]

T. Omland, How many Pythagorean triples with given inradius?, J. Numb. Theory 170 (2017) 1-2.

FORMULA

Multiplicative with a(2^e) = e+1, a(p^e) = 2*e+1, p > 2. a(n) = tau(n^2) if n is odd, a(n) = tau(n^2) - a(n/2) if n is even.

Dirichlet g.f.: zeta^3(s)/(zeta(2s)*(1+1/2^s)). - R. J. Mathar, Jun 01 2011

Sum_{k=1..n} a(k) ~ 2*n / (9*Pi^2) * (9*log(n)^2 + 6*log(n) * (-3 + 9*g + log(2) - 36*Pi^(-2)*z1) + 18 + 54*g^2 + 18*g * (log(2) - 3) - 6*log(2) - log(2)^2 - 54*sg1 + 2592*z1^2/Pi^4 - 72*Pi^-2*(9*g*z1 + (log(2) - 3)*z1 + 3*z2)), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019

a(n) = Sum_{d|n} mu(2d)^2*tau(n/d), Dirichlet convolution of A323239 and A000005. - Ridouane Oudra, Nov 17 2019

a(n) = A361689(n)/2. - R. J. Mathar, Mar 21 2023

MAPLE

with(numtheory): seq(add(mobius(2*d)^2*tau(n/d), d in divisors(n)), n=1..100); # Ridouane Oudra, Nov 17 2019

MATHEMATICA

Table[DivisorSigma[0, 2 n^2] / 2, {n, 100}] (* Vincenzo Librandi, Aug 14 2018 *)

PROG

(PARI) a(n) = numdiv(2*n^2)/2; \\ Michel Marcus, Oct 04 2013

(Sage) [sigma(2*n^2, 0)/2 for n in range(1, 100)] # Joerg Arndt, May 12 2014

(Magma) [NumberOfDivisors(2*n^2)/2 : n in [1..100]]; // Vincenzo Librandi, Aug 14 2018

CROSSREFS

KEYWORD

mult,nonn,easy

AUTHOR

Vladeta Jovovic, Dec 13 2002

STATUS

approved