login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of power series that satisfies A(x)^4 - 16x*A(x)^5 = 1, A(0)=1.
5

%I #15 Jan 31 2017 02:46:25

%S 1,4,56,1024,21216,473088,11075328,268435456,6677665280,169514369024,

%T 4373549027328,114349209288704,3023068543631360,80675644291153920,

%U 2170389180446539776,58798996734949195776,1602737048880933109760,43924199383151211970560

%N Coefficients of power series that satisfies A(x)^4 - 16x*A(x)^5 = 1, A(0)=1.

%C If A(x) = Sum_{k>=1} a(k)x^k satisfies A(x)^n - (n^2)*x*A(x)^(n+1) = 1, then a(n-1) = n^(2n-3) and a(2n-1) = n^(4n-2) (conjecture).

%C If A(x) = Sum_{k>=1} a(k)x^k satisfies A(x)^n - (n^2)*x*A(x)^(n+1) = 1, then a(k) = n^(2k)*binomial(k/n + 1/n + k - 1, k)/(k+1) and, consequently, a(n-1) = n^(2n-3) and a(2n-1) = n^(4n-2). - _Emeric Deutsch_, Dec 10 2002

%C A generalization of the Catalan sequence (A000108) since for n = 1 the equation A(x)^n - (n^2)*x*A(x)^(n+1) = 1 reduces to A(x) = 1 + xA(x)^2. - _Emeric Deutsch_, Dec 10 2002

%H G. C. Greubel, <a href="/A078533/b078533.txt">Table of n, a(n) for n = 0..675</a>

%F a(n) = 4^(2n)*binomial(5n/4 - 3/4, n)/(n+1). - _Emeric Deutsch_, Dec 10 2002

%F a(n) ~ 5^(5*n/4 - 1/4) * 2^(2*n - 1/2) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Dec 03 2014

%e A(x)^4 - 16x*A(x)^5 = 1 since A(x)^4 = 1 + 16x + 320x^2 + 7040x^3 + 163840x^4 + ... and A(x)^5 = 1 + 20x + 440x^2 + 10240x^3 + ... also a(3) = 4^5, a(7) = 4^14 = 268435456.

%t Table[4^(2*n)*Binomial[5*n/4-3/4, n]/(n+1),{n,0,20}] (* _Vaclav Kotesovec_, Dec 03 2014 *)

%o (PARI) for(n=0,50, print1(2^(4*n)*binomial((5*n-3)/4,n)/(n+1), ", ")) \\ _G. C. Greubel_, Jan 30 2017

%Y Cf. A078531, A078532, A078534, A078535.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 28 2002