login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Partial sums of A035187.
2

%I #15 Dec 13 2018 12:40:55

%S 1,1,1,2,3,3,3,3,4,4,6,6,6,6,6,7,7,7,9,10,10,10,10,10,11,11,11,11,13,

%T 13,15,15,15,15,15,16,16,16,16,16,18,18,18,20,21,21,21,21,22,22,22,22,

%U 22,22,24,24,24,24,26,26,28,28,28,29,29,29,29,29,29,29,31,31,31,31,31,33

%N Partial sums of A035187.

%H M. Baake, <a href="http://www.mathematik.uni-bielefeld.de/baake/preprints.html">Algebra, Combinatorics and Number Theory</a>

%H M. Baake and R. V. Moody, <a href="https://arxiv.org/abs/math/9904028">Similarity submodules and root systems in four dimensions</a>, arXiv:math/9904028 [math.MG], 1999; Canad. J. Math. 51 (1999), 1258-1276.

%F a(n) = Sum_{k=1..n} A035187(k).

%F a(n) is asymptotic to c*n where c=2*log(tau)/sqrt(5) and tau=(1+sqrt(5))/2

%t Array[DivisorSum[#, KroneckerSymbol[5, #]&]&, 76] // Accumulate (* _Jean-François Alcover_, Dec 13 2018 *)

%K nonn

%O 0,4

%A _Benoit Cloitre_, Dec 29 2002