Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 12 2024 14:09:53
%S 12,14,18,20,22,28,29,34,36,37,44,45,49,50,52,54,60,62,65,66,68,69,76,
%T 78,82,84,86,92,94,98,99,100,101,108,109,114,116,118,124,125,130,131,
%U 132,133,140,142,145,146,148,150,156,157,162,164,165,172,173,177,178
%N Numbers k such that h(k) = h(k+1), where h(k) is the length of k, f(k), f(f(k)), ..., 1 in the Collatz (or 3x + 1) problem. (The earliest "1" is meant.)
%C Recall that f(k) = k/2 if k is even, 3k + 1 if k is odd (A006370).
%H Eric M. Schmidt, <a href="/A078417/b078417.txt">Table of n, a(n) for n = 1..10000</a>
%H Marcus Elia and Amanda Tucker, <a href="http://arxiv.org/abs/1511.09141">Consecutive Integers and the Collatz Conjecture</a>, arXiv:1511.09141 [math.NT], 2015.
%H Lynn E. Garner, <a href="http://dx.doi.org/10.1016/S0012-365X(85)80020-0">On heights in the Collatz 3n+1 problem</a>, Discrete Math, 55 (1985), 57-64.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Collatz_conjecture">Collatz Conjecture</a>
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%e The Collatz trajectories k, f(k), f(f(k)), ..., 1 for k = 12 and 13, respectively, are {12, 6, 3, 10, 5, 16, 8, 4, 2, 1} and {13, 40, 20, 10, 5, 16, 8, 4, 2, 1}, which are both of length 10. Hence h(12) = h(13) = 10, so 12 belongs to this sequence.
%p collatz:= proc(n) option remember; `if`(n=1, 0,
%p 1 + collatz(`if`(n::even, n/2, 3*n+1)))
%p end:
%p q:= n-> is(collatz(n)=collatz(n+1)):
%p select(q, [$1..200])[]; # _Alois P. Heinz_, Jul 19 2023
%t h[n_] := Length@NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &];
%t okQ[n_] := h[n] == h[n+1];
%t Select[Range[200], okQ] (* _Jean-François Alcover_, Jan 12 2024 *)
%Y Cf. A006370, A006577.
%K nonn
%O 1,1
%A _Joseph L. Pe_, Dec 29 2002