login
Decimal expansion of Viswanath's constant.
9

%I #60 Oct 24 2024 12:33:00

%S 1,1,3,1,9,8,8,2,4,8,7,9,4,3

%N Decimal expansion of Viswanath's constant.

%D K. Devlin, "How Recreational Mathematics Can Save The World" in "Puzzler's Tribute" Ed. D. Wolfe & T. Rodgers pp. 351-9, A. K. Peters, MA, 2002.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.4.

%H Zai-Qiao Bai, <a href="http://dx.doi.org/10.1088/1751-8113/40/29/008">On the cycle expansion for the Lyapunov exponent of a product of random matrices</a>, J. Phys. A: Math. Theo. 40: 8315-8328, 2007.

%H K. Devlin, <a href="https://www.maa.org/external_archive/devlin/devlin_3_99.html">New mathematical constant discovered</a>

%H M. Embree and L. N. Trefethen, <a href="http://www.jstor.org/stable/53482">Growth and decay of random Fibonacci sequences</a>, Roy. Soc. London Proc. Ser. A, Math. Phys. Eng. Sci. 455 (1999), pp. 2471-2485.

%H James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=ELA8gNNMHoU">Random Fibonacci Numbers</a>, Numberphile video (2020)

%H Kevin Hare, J.C. Saunders, <a href="https://arxiv.org/abs/1910.07824">Random Fibonacci sequences from balancing words</a>, arXiv:1910.07824 [math.NT], 2019.

%H Brian Hayes, <a href="https://www.jstor.org/stable/27857864">The Vibonacci Numbers</a>

%H E. Makover and J. McGowan, <a href="http://arxiv.org/abs/math/0510159">An elementary proof that random Fibonacci sequences grow exponentially</a>, arXiv:math/0510159 [math.NT], 2005.

%H Karyn McLellan, <a href="https://doi.org/10.37236/3204">Periodic coefficients and random Fibonacci sequences</a>, Electronic Journal of Combinatorics, 20(4), 2013, #P32.

%H J. B. Oliveira and L. H de Figueiredo, <a href="http://dx.doi.org/10.1023/A:1014702122205">Interval computation of Viswanath's constant</a>, Reliable Computing 8 (2002) no. 2, 131-138.

%H Asim Patra and Gopal Krishna Panda, <a href="https://doi.org/10.1007/s40065-024-00475-y">Random balancing-like sequences</a>, Arab. J. Math. (2024).

%H I. Peterson, <a href="https://www.sciencenews.org/archive/fibonacci-random">Fibonacci at random</a>

%H I. Peterson, Math Trek, <a href="https://www.sciencenews.org/article/stepping-beyond-fibonacci-numbers-0">Stepping Beyond Fibonacci Numbers</a>

%H B. Rittaud, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Rittaud2/rittaud11.html">On the Average Growth of Random Fibonacci Sequences</a>, Journal of Integer Sequences, 10 (2007), Article 07.2.4.

%H Lloyd N. Trefethen, <a href="http://web.comlab.ox.ac.uk/oucl/people/nick.trefethen.html">Home page</a>

%H Divakar Viswanath, <a href="http://www.math.lsa.umich.edu/~divakar/">Home page</a>

%H D. Viswanath, <a href="http://dx.doi.org/10.1090/S0025-5718-99-01145-X">Random Fibonacci sequences and the number 1.13198824....</a>, Mathematics of Computation, Vol. 69, no. 231 (2000), 1131-1155.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RandomFibonacciSequence.html">Random Fibonacci Sequence</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RandomMatrix.html">Random Matrix</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Viswanath%27s_constant">Viswanath's constant</a>

%e 1.1319882487943....

%Y Cf. A115064.

%K nonn,cons,hard,more

%O 1,3

%A _Gary W. Adamson_, Dec 28 2002

%E More terms from ZQ Bai (phybai(AT)163.com), Dec 17 2007

%E 3 additional terms (computed directly from D. Viswanath program using 2^32 subdivisions, 128 bits double and Wynn epsilon extrapolation) by _Jerome Raulin_, Oct 13 2017

%E The proposed last three digits (061 of 1.1319882487943061) have been deleted as there seems to be some doubt about them. - _N. J. A. Sloane_, Feb 25 2018