login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Non-oblong numbers: Complement of A002378.
18

%I #40 Oct 01 2024 03:39:05

%S 1,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,

%T 31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,

%U 55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74

%N Non-oblong numbers: Complement of A002378.

%C The (primitive) period length k(n)=A077427(n) of the (regular) continued fraction of (sqrt(4*a(n)+1)+1)/2 determines whether or not the Diophantine equation (2*x-y)^2 - (1+4*a(n))*y^2 = +4 or -4 is solvable and the approximants of this continued fraction give all solutions. See A077057.

%C The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - _Jeremy Gardiner_, Mar 16 2003

%C Infinite series 1/A078358(n) is divergent. Proof: Harmonic series 1/A000027(n) is divergent and can be distributed on two subseries 1/A002378(k+1) and 1/A078358(m). The infinite subseries 1/A002378(k+1) is convergent to 1, so Sum_{n>=1} 1/A078358(n) is divergent. - _Artur Jasinski_, Sep 28 2008

%D O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

%H Reinhard Zumkeller, <a href="/A078358/b078358.txt">Table of n, a(n) for n = 1..10000</a>

%H Oskar Perron, <a href="https://archive.org/details/dielehrevondenk00perrgoog">Die Lehre von den Kettenbrüchen</a>, Teubner, Leipzig, 1913.

%F 4*a(n)+1 is not a square number.

%F a(n) = ceiling(sqrt(n)) + n -1. - _Leroy Quet_, Jul 06 2007

%F A005369(a(n)) = 0. - _Reinhard Zumkeller_, Jul 05 2014

%t Complement[Range[930], Table[n (n + 1), {n, 0, 30}]] (* and *) Table[Ceiling[Sqrt[n]] + n - 1, {n, 900}] (* _Vladimir Joseph Stephan Orlovsky_, Jul 20 2011 *)

%o (Haskell)

%o a078358 n = a078358_list !! (n-1)

%o a078358_list = filter ((== 0) . a005369) [0..]

%o -- _Reinhard Zumkeller_, Jul 04 2014, May 08 2012

%o (PARI) a(n)=sqrtint(n-1)+n \\ _Charles R Greathouse IV_, Jan 17 2013

%o (Python)

%o from operator import sub

%o from sympy import integer_nthroot

%o def A078358(n): return n+sub(*integer_nthroot(n,2)) # _Chai Wah Wu_, Oct 01 2024

%Y a(n)=(A077425(n)-1)/4.

%Y Cf. A049068 (subsequence), A144786.

%K nonn,easy

%O 1,2

%A _Wolfdieter Lang_, Nov 29 2002