login
A078178
Least k>=2 such that n^k + n - 1 is prime.
3
2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 16, 2, 2, 4, 3, 2, 2, 2, 7, 4, 2, 3, 2, 3, 2, 10, 2, 2, 108, 3, 6, 2, 3, 7, 2, 2, 4, 2, 16, 3, 2, 2, 2, 20, 2, 7, 2, 3, 3, 2, 2, 2, 2, 9, 4, 2, 2, 7, 8, 3, 2, 2, 2, 24, 2, 6, 2, 12, 4, 3, 8, 6, 2, 4, 3, 9, 194, 3, 13, 2, 8, 2, 2, 3, 8, 2, 10, 6, 4, 2, 2, 54, 2, 132, 4, 10, 2
OFFSET
2,1
COMMENTS
n^a(n) + n - 1 = A078179(n).
EXAMPLE
7^2+7-1=5*11, but 7^3+7-1=349=A000040(70), therefore a(7)=3.
MATHEMATICA
lkp[n_]:=Module[{k=2}, While[!PrimeQ[n^k+n-1], k++]; k]; Array[lkp, 100, 2] (* Harvey P. Dale, May 24 2020 *)
PROG
(Haskell)
a078178 n = head [k | k <- [2..], a010051'' (n ^ k + n - 1) == 1]
-- Reinhard Zumkeller, Jul 16 2014
CROSSREFS
Cf. A010051.
Sequence in context: A358618 A183027 A359227 * A306396 A355035 A105068
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 20 2002
EXTENSIONS
More terms from Benoit Cloitre, Nov 20 2002
STATUS
approved