login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x)/(1+x+2*x^2-x^3).
2

%I #27 Jan 30 2021 20:57:51

%S 1,-2,0,5,-7,-3,22,-23,-24,92,-67,-141,367,-152,-723,1394,-100,-3411,

%T 5005,1717,-15138,16709,15284,-63840,49981,92983,-256785,120800,

%U 485753,-984138,133432,2320597,-3571599,-936163,10399958,-12099231,-9636848,44235268,-37060803,-61046581,179403455

%N Expansion of (1-x)/(1+x+2*x^2-x^3).

%H Michael De Vlieger, <a href="/A078049/b078049.txt">Table of n, a(n) for n = 0..4925</a>

%H Yüksel Soykan, <a href="https://arxiv.org/abs/1910.03490">Summing Formulas For Generalized Tribonacci Numbers</a>, arXiv:1910.03490 [math.GM], 2019.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2,1).

%F G.f.: (-1 + x)/(-1 - x - 2*x^2 + x^3). - _Michael De Vlieger_, Jan 09 2020

%t LinearRecurrence[{-1,-2,1},{1,-2,0},50] (* _Harvey P. Dale_, Oct 27 2015 *)

%o (PARI) Vec((1-x)/(1+x+2*x^2-x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012

%Y First differences of A077978.

%K sign,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 17 2002

%E Deleted certain dangerous or potentially dangerous links. - _N. J. A. Sloane_, Jan 30 2021