login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x)^(-1)/(1+x^2-2*x^3).
0

%I #21 Sep 14 2019 16:28:20

%S 1,1,0,2,3,-1,2,8,-3,-3,20,-2,-25,43,22,-92,65,137,-248,-6,523,-489,

%T -534,1536,-443,-2603,3516,1718,-8721,5315,12158,-22756,-1527,47073,

%U -43984,-50126,138131,-37841,-238382,314104,162701,-790867,465508,1116270,-2047241,-185253,4279782,-3909228

%N Expansion of (1-x)^(-1)/(1+x^2-2*x^3).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,3,-2).

%F a(n) = a(n-1) - a(n-2) + 3 a(n-3) - 2 a(n-4), with a(0) = a(1) = 1, a(2) = 0 and a(3) = 2. - _Jean-François Alcover_, Apr 06 2016

%F a(n) = n+1 - a(n-1) - 2*a(n-2), with a(0) = a(1) = 1. - _Michel Marcus_, Apr 06 2016

%t RecurrenceTable[{a[1] == a[2] == 1, a[n] == n - a[n-1] - 2 a[n-2]}, a, {n, 50}] (* _Jean-François Alcover_, Apr 06 2016 *)

%t LinearRecurrence[{1,-1,3,-2},{1,1,0,2},50] (* _Harvey P. Dale_, Sep 14 2019 *)

%o (PARI) Vec(1/((1-x)*(1+x^2-2*x^3)) + O(x^60)) \\ _Michel Marcus_, Apr 06 2016

%K sign,easy

%O 0,4

%A _N. J. A. Sloane_, Nov 17 2002