login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x)^(-1)/(1+2*x^3).
3

%I #9 Oct 03 2016 11:33:52

%S 1,1,1,-1,-1,-1,3,3,3,-5,-5,-5,11,11,11,-21,-21,-21,43,43,43,-85,-85,

%T -85,171,171,171,-341,-341,-341,683,683,683,-1365,-1365,-1365,2731,

%U 2731,2731,-5461,-5461,-5461,10923,10923,10923,-21845,-21845,-21845,43691,43691,43691,-87381,-87381,-87381,174763

%N Expansion of (1-x)^(-1)/(1+2*x^3).

%H Harvey P. Dale, <a href="/A077886/b077886.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-2,2).

%F a(0)=1, a(1)=1, a(2)=1, a(3)=-1, a(n)=a(n-1)-2*a(n-3)+2*a (n-4). - _Harvey P. Dale_, Apr 30 2016

%t CoefficientList[Series[(1-x)^(-1)/(1+2x^3),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,-2,2},{1,1,1,-1},60] (* _Harvey P. Dale_, Apr 30 2016 *)

%o (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 2,-2,0,1]^n*[1;1;1;-1])[1,1] \\ _Charles R Greathouse IV_, Oct 03 2016

%K sign,easy

%O 0,7

%A _N. J. A. Sloane_, Nov 17 2002