Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:45:07
%S 1,3,6,9,10,6,-6,-27,-53,-72,-63,0,136,336,537,603,334,-471,-1878,
%T -3618,-4886,-4275,-45,9072,22465,35904,40272,22176,-31823,-126093,
%U -242538,-327159,-285686,-1674,609498,1506357,2404891,2693928,1476609,-2145600,-8461736,-16254480,-21901623
%N Expansion of (1-x)^(-1)/(1-2*x+x^2+x^3).
%H Vincenzo Librandi, <a href="/A077856/b077856.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,0,1).
%F a(n) = Sum_{k=1..floor(n/3+1)} (-1)^k*binomial(n-k+3, 2*k). - _Vladeta Jovovic_, Feb 10 2003
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-4). - _Chai Wah Wu_, May 25 2016
%t LinearRecurrence[{3, -3, 0, 1}, {1, 3, 6, 9}, 50] (* _Vincenzo Librandi_, May 27 2016 *)
%o (PARI) Vec((1-x)^(-1)/(1-2*x+x^2+x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012
%o (Magma) I:=[1,3,6,9]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, May 27 2016
%Y Cf. A078001.
%K sign,easy
%O 0,2
%A _N. J. A. Sloane_, Nov 17 2002