Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #56 Jul 30 2023 08:10:30
%S 0,1,2,2,3,4,4,5,6,6,7,6,9,8,8,10,10,11,11,12,11,14,12,13,15,16,15,15,
%T 17,16,17,19,18,19,20,19,20,21,20,22,22,24,22,25,23,26,26,24,29,26,27,
%U 28,27,29,26,31,32,30,29,33,33,31,31,35,34,35,35,35,36,37,37,33,42,37,38
%N Number of integers between n^2 and (n+1)^2 that are the sum of two squares; multiple representations are counted once.
%C Related to the circle problem, cf. A077770. See A077774 for a more restrictive case. A077768 counts the representations multiply.
%C Number of integers k in range [n^2, ((n+1)^2)-1] for which 2 = the least number of squares that add up to k (A002828). Because of this interpretation a(0)=0 was prepended to the beginning. - _Antti Karttunen_, Oct 04 2016
%C This sequence is not surjective, since, for instance, there is no n such that a(n) = 46. This follows from a bound observed by _Jon E. Schoenfield_, that if a(n) = m then n < ((m+1)^2)/2, and the fact that a(n) != 46 for all n < 1105. - _Rainer Rosenthal_, Jul 25 2023
%H Hugo Pfoertner, <a href="/A077773/b077773.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1024 from T. D. Noe and Antti Karttunen).
%H Hugo Pfoertner, <a href="http://www.randomwalk.de/sequences/a077773.txt">Table of n, a(n) for n = 0..500000</a>
%H Rainer Rosenthal, <a href="/A077773/a077773.png">Illustrating A077773</a>
%F a(n) = Sum_{i=n^2+1..(n+1)^2-1} A229062(i). - _Ralf Stephan_, Sep 17 2013
%F From _Antti Karttunen_, Oct 04 2016: (Start)
%F For n >= 0, a(n) + A277193(n) + A277194(n) = 2n.
%F For n >= 1, A277192(n) = a(n) + A277194(n). (End)
%e a(8)=6 because 65=64+1=49+16, 68=64+4, 72=36+36, 73=64+9, 74=49+25 and 80=64+16 are between squares 64 and 81. Note that 65 is counted only once.
%t maxN=100; lst={}; For[n=1, n<=maxN, n++, sqrs={}; i=n; j=0; While[i>=j, j=1; While[i^2+j^2<(n+1)^2, If[i>=j&&i^2+j^2>n^2, AppendTo[sqrs, i^2+j^2]]; j++ ]; i--; j-- ]; AppendTo[lst, Length[Union[sqrs]]]]; lst
%o (PARI) a(N)=s=0;for(n=N^2+1,(N+1)^2-1,f=0;r=sqrtint(n);forstep(i=r,1,-1,if(issquare(n-i*i),f=1;s=s+1;break)));s /* _Ralf Stephan_, Sep 17 2013 */
%o (Scheme)
%o (define (A077773 n) (add (lambda (i) (* (- 1 (A010052 i)) (A229062 i))) (A000290 n) (+ -1 (A000290 (+ 1 n)))))
%o ;; Implements sum_{i=lowlim..uplim} intfun(i)
%o (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
%o ;; _Antti Karttunen_, Oct 04 2016
%o (Python)
%o from sympy import factorint
%o def A077773(n): return sum(1 for m in range(n**2+1,(n+1)**2) if all(p==2 or p&3==1 or e&1^1 for p, e in factorint(m).items())) # _Chai Wah Wu_, Jun 20 2023
%Y Cf. A000290, A002828, A010052, A077768, A077770, A077774, A229062, A277192, A277193, A277194.
%Y Cf. A363762 (terms not occurring in this sequence), A363763.
%K nonn
%O 0,3
%A _T. D. Noe_, Nov 20 2002
%E Term a(0)=0 prepended by _Antti Karttunen_, Oct 04 2016