login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077765
Number of maximum-size antichains in partition lattice Par(n).
2
1, 1, 2, 3, 5, 7, 2, 4, 15, 4, 2, 11, 18, 14, 53, 2, 54, 1606, 482, 104, 754, 536
OFFSET
0,3
COMMENTS
Par(n) is the set of partitions of n under 'dominance order': partition P is <= partition Q iff the sum of the largest k parts of P is <= the corresponding sum for Q for all k.
EXAMPLE
For n=10, the maximum size is A076269(10)=4. There are 2 maximum-size antichains: {5+1+1+1+1+1, 4+3+1+1+1, 4+2+2+2, 3+3+3+1} and {6+1+1+1+1, 5+2+2+1, 4+4+1+1, 4+3+3}. So a(10)=2.
MATHEMATICA
leq[p_, q_] := If[Length[p]<Length[q], False, Module[{i, ds}, For[i=1; ds=0, i<Length[q], i++, If[(ds+=q[[i]]-p[[i]])<0, Return[False]]]; True]]; maxac[l_] := If[Length[l]<=1, Length[l], maxac[l]=Max[maxac[Drop[l, 1]], 1+maxac[Select[l, !leq[ #, l[[1]]]&&!leq[l[[1]], # ]&]]]]; maxantichains[l_] := If[Length[l]<=1, {l}, Module[{v, t}, v={}; If[maxac[l]==maxac[Drop[l, 1]], v=Join[v, maxantichains[Drop[l, 1]]]]; t=Select[l, !leq[ #, l[[1]]]&&!leq[l[[1]], # ]&]; If[maxac[l]==1+maxac[t], v=Join[v, Prepend[ #, l[[1]]]&/@maxantichains[t]]]; v]]; a[n_] := Length[maxantichains[Partitions[n]]] (* First do <<DiscreteMath`Combinatorica` *) (* maxac[l] = size of largest antichain in set l. maxantichains[l] = list of all maximum-length antichains in l. *)
CROSSREFS
The corresponding sizes are in A076269.
Sequence in context: A038194 A111309 A007605 * A078400 A068951 A139752
KEYWORD
nonn,more
AUTHOR
Dean Hickerson, Nov 14 2002
STATUS
approved