Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 23 2022 15:42:12
%S 7,17,317,6317,26317,126317,2126317,72126317,372126317,5372126317,
%T 305372126317,9305372126317,409305372126317,20409305372126317,
%U 100020409305372126317,9100020409305372126317,209100020409305372126317,40209100020409305372126317
%N a(1) = 7; thereafter a(n) = the smallest prime of the form d0...0a(n-1), where d is a single digit, or 0 if no such prime exists.
%C a(n) is the smallest prime obtained by prefixing a(n-1) with a number of the form d*10^k where d is a single digit, 0 < d < 10, and k >= 0. Conjecture: d*10^k always exists.
%H Michael S. Branicky, <a href="/A077715/b077715.txt">Table of n, a(n) for n = 1..50</a>
%p a:= proc(n) option remember; local k, m, d, p;
%p if n=1 then 7 else k:= a(n-1);
%p for m from length(k) do
%p for d to 9 do p:= k +d*10^m;
%p if isprime(p) then return p fi
%p od od
%p fi
%p end:
%p seq(a(n), n=1..20); # _Alois P. Heinz_, Jan 12 2015
%o (Python)
%o from sympy import isprime
%o from itertools import islice
%o def agen(an=7):
%o while True:
%o yield an
%o pow10 = 10**len(str(an))
%o while True:
%o found = False
%o for t in range(pow10+an, 10*pow10+an, pow10):
%o if isprime(t):
%o an = t; found = True; break
%o if found: break
%o pow10 *= 10
%o print(list(islice(agen(), 18))) # _Michael S. Branicky_, Jun 23 2022
%Y Cf. A053584, A077713, A077714, A077716.
%K base,nonn
%O 1,1
%A _Amarnath Murthy_, Nov 19 2002
%E More terms from _Ray Chandler_, Jul 23 2003
%E Definition clarified by _N. J. A. Sloane_, Jan 19 2015