Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Aug 05 2024 14:55:42
%S 1,2,4,6,14,40,56,100,2988,13200,805600,1323000,1744790520,
%T 112326337200,10154793943770044128560,26773964343922343708160,
%U 185027354760601080,1418008957437634586640
%N LCM of terms in period of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.
%e For A051451(10) = 360360, the periodic part is P = {3,2,1,132,1,2,3,1200} with lcm(P)=13200 as LCM of terms, so a(10) = 13200.
%t Table[Apply[LCM, Last[ContinuedFraction[Sqrt[Part[t, u]]]]], {u, 1, 24}]
%Y Cf. A000961, A051451, A077636, A077637, A077638.
%K nonn
%O 1,2
%A _Labos Elemer_, Nov 13 2002