login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Largest term in periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.
3

%I #20 Sep 24 2021 10:18:45

%S 0,2,4,6,14,40,56,100,332,1200,1696,7000,30514,146344,327236,566792,

%T 3052270,16994324,24033604,146190716,936077324,6138269514,42081855636,

%U 111338124722,810553782854,6225981742592,48626471887292,68768216033362,562892107725410,4743013205833238

%N Largest term in periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.

%H Chai Wah Wu, <a href="/A077637/b077637.txt">Table of n, a(n) for n = 1..37</a>

%e For A051451(10) = 360360, the periodic part is {3,2,1,132,1,2,3,1200} with 1200 as largest term, so a(10) = 1200.

%t t={A051451(n)} Table[Max[Last[ContinuedFraction[Sqrt[Part[t, u]]]]], {u, 1, 24}]

%Y Cf. A000961, A051451, A077636.

%K nonn

%O 1,2

%A _Labos Elemer_, Nov 13 2002

%E a(25)-a(28) from _Ray Chandler_, Jan 16 2009

%E a(1) corrected and a(29)-a(30) added by _Chai Wah Wu_, Sep 20 2021