The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077528 a(n) = smallest nontrivial (>1) palindrome == 1 (mod n). 2
 3, 4, 5, 6, 7, 8, 9, 55, 11, 111, 121, 66, 99, 121, 33, 171, 55, 77, 101, 22, 111, 323, 121, 101, 131, 55, 141, 88, 121, 373, 33, 232, 171, 141, 181, 1111, 77, 313, 121, 575, 505, 44, 353, 181, 323, 424, 1441, 99, 101, 868, 313, 10601, 55, 111, 393, 343, 929, 414 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS Robert Israel, Table of n, a(n) for n = 2..10000 MAPLE f:= proc(n) local d, S, j, q, x0, t, r, x;     for d from 2 do       S[ceil(d/2)+1]:= {0}:       for j from ceil(d/2) to 1 by -1 do         if j = (d+1)/2 then q:= 10^(j-1)         else q:= 10^(j-1)+10^(d-j)         fi;         if j = 1 then x0:= 1 else x0:= 0 fi;         S[j]:= {seq(seq(x*q+s mod n, x=x0..9), s=S[j+1])};       od;       if member(1, S[1]) then          t:= 1; r:= 0;          for j from 1 to ceil(d/2) do            if j = (d+1)/2 then q:= 10^(j-1) else q:= 10^(j-1)+10^(d-j) fi;            if j = 1 then x0:= 1 else x0:= 0 fi;            for x from x0 to 9 do              if member(t - x*q mod n, S[j+1]) then                 r:= r + x*q;                 t:= t - x*q mod n;                 break              fi            od;         od;         return r       fi    od end proc: \$3..9, seq(f(n), n=9..100); # Robert Israel, Dec 17 2019 CROSSREFS Cf. A002113. Sequence in context: A051415 A037351 A293727 * A329254 A183296 A138928 Adjacent sequences:  A077525 A077526 A077527 * A077529 A077530 A077531 KEYWORD base,nonn,look AUTHOR Amarnath Murthy, Nov 08 2002 EXTENSIONS Corrected and extended by Ray Chandler, Aug 20 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 22:33 EST 2022. Contains 350410 sequences. (Running on oeis4.)