login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077528
a(n) = smallest nontrivial (>1) palindrome == 1 (mod n).
2
3, 4, 5, 6, 7, 8, 9, 55, 11, 111, 121, 66, 99, 121, 33, 171, 55, 77, 101, 22, 111, 323, 121, 101, 131, 55, 141, 88, 121, 373, 33, 232, 171, 141, 181, 1111, 77, 313, 121, 575, 505, 44, 353, 181, 323, 424, 1441, 99, 101, 868, 313, 10601, 55, 111, 393, 343, 929, 414
OFFSET
2,1
LINKS
MAPLE
f:= proc(n) local d, S, j, q, x0, t, r, x;
for d from 2 do
S[ceil(d/2)+1]:= {0}:
for j from ceil(d/2) to 1 by -1 do
if j = (d+1)/2 then q:= 10^(j-1)
else q:= 10^(j-1)+10^(d-j)
fi;
if j = 1 then x0:= 1 else x0:= 0 fi;
S[j]:= {seq(seq(x*q+s mod n, x=x0..9), s=S[j+1])};
od;
if member(1, S[1]) then
t:= 1; r:= 0;
for j from 1 to ceil(d/2) do
if j = (d+1)/2 then q:= 10^(j-1) else q:= 10^(j-1)+10^(d-j) fi;
if j = 1 then x0:= 1 else x0:= 0 fi;
for x from x0 to 9 do
if member(t - x*q mod n, S[j+1]) then
r:= r + x*q;
t:= t - x*q mod n;
break
fi
od;
od;
return r
fi
od
end proc:
$3..9, seq(f(n), n=9..100); # Robert Israel, Dec 17 2019
MATHEMATICA
With[{pals=Select[Range[2, 11000], PalindromeQ]}, Table[SelectFirst[pals, Mod[#, n]==1&], {n, 2, 60}]] (* Harvey P. Dale, Dec 03 2023 *)
CROSSREFS
Cf. A002113.
Sequence in context: A051415 A037351 A293727 * A329254 A359003 A183296
KEYWORD
base,nonn,look
AUTHOR
Amarnath Murthy, Nov 08 2002
EXTENSIONS
Corrected and extended by Ray Chandler, Aug 20 2003
STATUS
approved