login
Total number of prime factors of numbers m with bigomega(m) == 0 modulo omega(m) (counted with repetition).
3

%I #8 May 09 2017 00:09:40

%S 1,1,2,1,2,1,3,2,2,1,1,2,2,4,1,1,2,2,1,4,2,2,3,1,3,1,5,2,2,2,4,1,2,2,

%T 4,1,3,1,2,1,2,2,1,4,2,4,2,2,1,1,2,6,2,3,1,2,3,1,1,2,2,3,1,4,2,1,2,2,

%U 2,4,1,2,2,2,2,6,1,4,1,3,1,4,3,2,1,1,3,2,1,3,2,2,2,2,2,2,3,1,7,2,3,1,2,2,4

%N Total number of prime factors of numbers m with bigomega(m) == 0 modulo omega(m) (counted with repetition).

%H G. C. Greubel, <a href="/A077480/b077480.txt">Table of n, a(n) for n = 1..5000</a>

%t PrimeOmega[Select[Range[2,500], Divisible[PrimeOmega[#], PrimeNu[#]] &]] (* _G. C. Greubel_, May 08 2017 *)

%Y Equals A001222(A067340(n)).

%Y Cf. A077479, A077481, A001221.

%K nonn

%O 1,3

%A _Reinhard Zumkeller_, Nov 06 2002