login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct prime factors of numbers m with BigOmega(m) == 0 modulo omega(m).
3

%I #11 May 09 2017 00:09:34

%S 1,1,1,1,2,1,1,1,2,1,1,2,2,1,1,1,2,2,1,2,1,2,1,1,3,1,1,2,2,2,2,1,2,2,

%T 2,1,3,1,2,1,1,2,1,2,2,2,2,2,1,1,2,1,2,3,1,2,3,1,1,2,2,3,1,1,2,1,2,2,

%U 2,2,1,2,2,2,2,2,1,2,1,3,1,2,3,2,1,1,3,2,1,3,2,2,2,1,2,2,1,1,1,2,3,1,2,2,2

%N Number of distinct prime factors of numbers m with BigOmega(m) == 0 modulo omega(m).

%H G. C. Greubel, <a href="/A077479/b077479.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A001221(A067340(n)).

%t PrimeNu /@ Select[ Range[2, 150], Mod[PrimeOmega[#], PrimeNu[#]] == 0 &] (* _Jean-François Alcover_, Jun 29 2013 *)

%Y Cf. A001221, A067340, A077480, A077481, A001222.

%K nonn

%O 1,5

%A _Reinhard Zumkeller_, Nov 06 2002