Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Aug 07 2015 02:41:54
%S 5,13,17,29,37,41,53,61,65,73,85,89,97,101,109,113,125,137,145,149,
%T 157,173,181,185,193,197,229,233,241,257,265,269,277,281,293,313,317,
%U 325,337,349,353,365,373,389,397,401,409,421,425,433,445,449,457,461,481,485
%N Nonsquare integers n such that the continued fraction (sqrt(n)+1)/2 has odd period length.
%C Nonsquare integers n for which Pell equation x^2 - n*y^2 = -4 has infinitely many integer solutions. The smallest solutions are given in A078356 and A078357.
%D O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, table p. 108).
%H Vincenzo Librandi, <a href="/A077426/b077426.txt">Table of n, a(n) for n = 1..1000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pell%27s_equation">Pell's equation</a>
%p isOddPrim := proc(n::integer)
%p local cf;
%p cf := numtheory[cfrac]((sqrt(n)+1)/2,'periodic','quotients') ;
%p if nops(op(2,cf)) mod 2 =1 then
%p RETURN(true) ;
%p else
%p RETURN(false) ;
%p fi ;
%p end:
%p notA077426 := proc(n::integer)
%p if issqr(n) then
%p RETURN(true) ;
%p elif not isOddPrim(n) then
%p RETURN(true) ;
%p else
%p RETURN(false) ;
%p fi ;
%p end:
%p A077426 := proc(n::integer)
%p local resul,i ;
%p resul := 5 ;
%p i := 1 ;
%p while i < n do
%p resul := resul+4 ;
%p while notA077426(resul) do
%p resul := resul+4 ;
%p od ;
%p i:= i+1 ;
%p od ;
%p RETURN(resul) ;
%p end:
%p for n from 1 to 61 do print(A077426(n)) ; od : # _R. J. Mathar_, Apr 25 2006
%t fQ[n_] := !IntegerQ@ Sqrt@ n && OddQ@ Length@ ContinuedFraction[(Sqrt@ n + 1)/2][[2]]; Select[Range@ 500, fQ] (* _Robert G. Wilson v_, Nov 17 2012 *)
%Y A subsequence of A077425.
%Y Odd elements of A003814.
%Y Cf. A077427, A172000.
%K nonn,easy
%O 1,1
%A _Wolfdieter Lang_, Nov 29 2002
%E Edited and extended by _Max Alekseyev_, Mar 03 2010
%E Edited by _Max Alekseyev_, Mar 05 2010