login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Chebyshev sequence T(n,11) with Diophantine property.
10

%I #39 Sep 08 2022 08:45:07

%S 1,11,241,5291,116161,2550251,55989361,1229215691,26986755841,

%T 592479412811,13007560326001,285573847759211,6269617090376641,

%U 137646002140526891,3021942430001214961,66345087457886202251,1456569981643495234561,31978194508699008958091

%N Chebyshev sequence T(n,11) with Diophantine property.

%C Numbers n such that 30*(n^2-1) is square. - _Vincenzo Librandi_, Aug 08 2010

%C Except for the first term, positive values of x (or y) satisfying x^2 - 22xy + y^2 + 120 = 0. - _Colin Barker_, Feb 19 2014

%H Colin Barker, <a href="/A077422/b077422.txt">Table of n, a(n) for n = 0..745</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (22,-1).

%F a(n+1)^2 - 30*(2*b(n))^2 = 1, n>=0, with the companion sequence b(n)=A077421(n).

%F a(n) = 22*a(n-1) - a(n-2), a(-1) := 11, a(0)=1.

%F a(n) = T(n, 11) = (S(n, 22)-S(n-2, 22))/2 = S(n, 22)-11*S(n-1, 22) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 22)=A077421(n).

%F a(n) = (ap^n + am^n)/2 with ap := 11+2*sqrt(30) and am := 11-2*sqrt(30).

%F a(n) = sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*11)^(n-2*k), k=0..floor(n/2)), n>=1.

%F a(n+1) = sqrt(1 + 30*(2*A077421(n))^2), n>=0.

%F a(n) = Cosh[2n*ArcSinh[Sqrt[5]]] - _Herbert Kociemba_, Apr 24 2008

%F G.f.: (1-11*x)/(1-22*x+x^2). - _Philippe Deléham_, Nov 17 2008

%t Table[Cos[n*ArcCos[11]] // Round, {n, 0, 15}] (* _Jean-François Alcover_, Dec 19 2013 *)

%t LinearRecurrence[{22,-1},{1,11},20] (* _Harvey P. Dale_, Jul 30 2022 *)

%o (Sage) [lucas_number2(n,22,1)/2 for n in range(0,20)] # _Zerinvary Lajos_, Jun 26 2008

%o (Magma) [n: n in [1..10000000] |IsSquare(30*(n^2-1))] // _Vincenzo Librandi_, Aug 08 2010

%o (PARI) Vec((1-11*x)/(1-22*x+x^2) + O(x^100)) \\ _Colin Barker_, Jun 15 2015

%Y Cf. A090730.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Nov 29 2002