login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Chebyshev S-sequence with Diophantine property.
10

%I #41 Sep 08 2022 08:45:07

%S 1,13,155,1847,22009,262261,3125123,37239215,443745457,5287706269,

%T 63008729771,750817050983,8946795882025,106610733533317,

%U 1270382006517779,15137973344680031,180385298129642593

%N Chebyshev S-sequence with Diophantine property.

%C 7*b(n)^2 - 5*a(n)^2 = 2 with companion sequence b(n) = A077417(n), n>=0.

%C a(n) = L(n,-12)*(-1)^n, where L is defined as in A108299; see also A077417 for L(n,+12). - _Reinhard Zumkeller_, Jun 01 2005

%H Ivan Panchenko, <a href="/A077416/b077416.txt">Table of n, a(n) for n = 0..200</a>

%H Andersen, K., Carbone, L. and Penta, D., <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.

%H Alex Fink, Richard K. Guy, and Mark Krusemeyer, <a href="https://doi.org/10.11575/cdm.v3i2.61940">Partitions with parts occurring at most thrice</a>, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-1).

%F a(n) = 12*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.

%F a(n) = S(n, 12) + S(n-1, 12) = S(2*n, sqrt(14)) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x)=0, S(n, 12) = A004191(n).

%F G.f.: (1+x)/(1-12*x+x^2).

%F a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := (sqrt(7)+sqrt(5))/sqrt(2) and am := (sqrt(7)-sqrt(5))/sqrt(2).

%F a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n-k,k) * 14^(n-k).

%F a(n) = sqrt((7*A077417(n)^2 - 2)/5).

%t LinearRecurrence[{12,-1},{1,13},30] (* _Harvey P. Dale_, Apr 03 2013 *)

%o (Sage) [(lucas_number2(n,12,1)-lucas_number2(n-1,12,1))/10 for n in range(1, 18)] # _Zerinvary Lajos_, Nov 10 2009

%o (PARI) x='x+O('x^30); Vec((1+x)/(1-12*x+x^2)) \\ _G. C. Greubel_, Jan 18 2018

%o (Magma) I:=[1, 13]; [n le 2 select I[n] else 12*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 18 2018

%Y Cf. A054320(n-1) with companion A072256(n), n>=1.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Nov 29 2002