login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077395
Lesser of two successive squarefree numbers whose product is not squarefree.
4
174, 422, 474, 602, 831, 843, 930, 1074, 1182, 1322, 1374, 1443, 1518, 1623, 1803, 1974, 2006, 2022, 2222, 2274, 2298, 2522, 2526, 2595, 2694, 2870, 2874, 3122, 3210, 3282, 3423, 3478, 3574, 3702, 3770, 3774, 4022, 4074, 4202, 4323, 4359, 4458, 4474
OFFSET
1,1
COMMENTS
Squarefree numbers b(m) = A005117(m) such that gcd(b(m),b(m+1)) > 1. - Thomas Ordowski, Aug 15 2015
LINKS
FORMULA
Conjecture: lim_{n->oo} n/a(n) > 0. - Thomas Ordowski and Robert Israel, Aug 18 2015
EXAMPLE
A005117(106)*A005117(107) = 174*177 = (2*3*29)*(3*59) is not squarefree, therefore 174 is a term.
MAPLE
SF:= select(numtheory:-issqrfree, [$1..10000]):
map(t -> if igcd(SF[t], SF[t+1])>1 then SF[t] else NULL fi, [$1..nops(SF)-1]); # Robert Israel, Aug 16 2015
MATHEMATICA
Transpose[Select[Partition[Select[Range[5000], SquareFreeQ], 2, 1], !SquareFreeQ[ Times@@#]&]][[1]] (* Harvey P. Dale, Dec 14 2012 *)
PROG
(PARI) lista(nn) = {last = 2; for (n=3, nn, if (issquarefree(n), if (! issquarefree(last*n), print1(last, ", ")); last = n; ); ); } \\ Michel Marcus, Aug 17 2015
CROSSREFS
Cf. A076144.
Sequence in context: A179136 A249432 A331586 * A185534 A185526 A248458
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 04 2002
STATUS
approved