login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Unique encountered factors from ( (prime(n)*prime(n+1))^2 + 1 )/2.
0

%I #16 Nov 29 2013 21:17:12

%S 113,613,5,24421,101,2042221,13,41,60731221,102975601,6653,253102501,

%T 327449641,17,14957,722798221,37,35597,797,233,2284271641,7937,337,73,

%U 29,53,46414646521,57358506301,2521,89,89249322541,61,281,56597

%N Unique encountered factors from ( (prime(n)*prime(n+1))^2 + 1 )/2.

%C Write down the prime factors of ( (prime(n)*prime(n+1))^2 + 1 )/2 for n >=2, omitting any that have been observed earlier.

%D C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory. Dover. New York: 1988.

%H Chris Nash, <a href="http://pages.prodigy.net/chris_nash/primeform.html">PrimeForm - Probable Prime and Classical Primality Testing for 32-bit Windows</a>. [?Broken link]

%H George F. Woltman, <a href="http://www.mersenne.org">GIMPS - The Great Internet Mersenne Prime Search</a>.

%e Primeform reports 2281 as the factor from ( (P(38321)*P(38322))2+1)/2; this is M17.

%t PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; a = {}; Do[l = PrimeFactors[((Prime[n]*Prime[n + 1])^2 + 1)/2]; If[ Position[a, l[[1]]] == {}, AppendTo[a, l[[1]]]], {n, 2, 127}]; a

%o (Gnumeric) cell B2 =pfactor(((A1*A2)^2+1)/2) # supposes the prime list is in col A; Ai, Bi include the cell indices. The output may contain duplicates. - _Bill McEachen_, Dec 10 2010

%K nonn

%O 2,1

%A _Bill McEachen_, Aug 22 2003

%E Edited by _Robert G. Wilson v_, Sep 27 2003