Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jan 01 2024 11:05:36
%S 2,17,134,1055,8306,65393,514838,4053311,31911650,251239889,
%T 1978007462,15572819807,122604550994,965263588145,7599504154166,
%U 59830769645183,471046653007298,3708542454413201,29197292982298310
%N Bisection (odd part) of Chebyshev sequence with Diophantine property.
%C -5*a(n)^2 + 3* b(n)^2 = 7, with the companion sequence b(n)= A077244(n).
%C The even part is A077245(n) with Diophantine companion A077246(n).
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1).
%F a(n)= 8*a(n-1) - a(n-2), a(-1)=-1, a(0)=2.
%F a(n)= 2*S(n, 8)+S(n-1, 8), with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 8)= A001090(n+1).
%F G.f.: (2+x)/(1-8*x+x^2).
%e 5*a(1)^2 + 7 = 5*17^2+7 = 1452 = 3*22^2 = 3*A077244(1)^2.
%t LinearRecurrence[{8,-1},{2,17},30] (* _Harvey P. Dale_, Oct 03 2015 *)
%K nonn,easy
%O 0,1
%A _Wolfdieter Lang_, Nov 08 2002