Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jan 01 2024 11:05:31
%S 4,11,40,149,556,2075,7744,28901,107860,402539,1502296,5606645,
%T 20924284,78090491,291437680,1087660229,4059203236,15149152715,
%U 56537407624,211000477781,787464503500,2938857536219,10967965641376
%N a(n) = 4*a(n-1) - a(n-2) with a(0) = 4 and a(1) = 11.
%C a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A054491(n).
%C Bisection (even part) of Chebyshev sequence with Diophantine property.
%C The odd part is A077235(n) with Diophantine companion A077234(n).
%H Luigi Cerlienco, Maurice Mignotte, and F. Piras, <a href="http://dx.doi.org/10.5169/seals-87887">Suites récurrentes linéaires: Propriétés algébriques et arithmétiques</a>, L'Enseignement Math., 33 (1987), 67-108. See Example 2, page 93.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-1).
%F a(n) = T(n+1,2) + 2*T(n,2), with T(n,x) Chebyshev's polynomials of the first kind, A053120. T(n,2) = A001075(n).
%F G.f.: (4-5*x)/(1-4*x+x^2).
%F From Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009: (Start)
%F a(n) = ((4+sqrt(3))*(2+sqrt(3))^n + (4-sqrt(3))*(2-sqrt(3))^n)/2. Offset 0.
%F a(n) = second binomial transform of 4,3,12,9,36. (End)
%F a(n) = (A054491(n+1) - A054491(n-1))/2 = sqrt(3*A054491(n-1)*A054491(n+1) + 52), n >= 1. - _Klaus Purath_, Oct 12 2021
%e 11 = a(1) = sqrt(3*A054491(1)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
%t CoefficientList[Series[(4-5*x)/(1-4*x+x^2), {x,0,20}], x] (* or *) LinearRecurrence[{4,-1}, {4,11}, 30] (* _G. C. Greubel_, Apr 28 2019 *)
%o (PARI) my(x='x+O('x^30)); Vec((4-5*x)/(1-4*x+x^2)) \\ _G. C. Greubel_, Apr 28 2019
%o (PARI) a(n) = polchebyshev(n+1, 1, 2) + 2*polchebyshev(n, 1, 2); \\ _Michel Marcus_, Oct 13 2021
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (4-5*x)/(1-4*x+x^2) )); // _G. C. Greubel_, Apr 28 2019
%o (Sage) ((4-5*x)/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 28 2019
%o (GAP) a:=[4,11];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Apr 28 2019
%Y Cf. A077238 (even and odd parts), A077235, A053120.
%K nonn,easy
%O 0,1
%A _Wolfdieter Lang_, Nov 08 2002
%E Edited by _N. J. A. Sloane_, Sep 07 2018, replacing old definition with simple formula from _Philippe Deléham_, Nov 16 2008