

A077224


a(0) = 1; for n > 1, a(n) = smallest number > a(n1) such that a(n) + a(k) is squarefree for k = 1 to n1.


6



1, 2, 4, 9, 13, 29, 33, 101, 105, 109, 157, 177, 253, 289, 301, 353, 409, 429, 465, 501, 533, 553, 589, 609, 681, 753, 877, 933, 965, 1153, 1477, 1905, 1977, 2101, 2125, 2229, 2305, 2405, 2605, 2657, 2801, 2913, 3305, 3381, 3489, 3565, 3777, 3781, 3881, 4029
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Or, sum of any two terms is a squarefree number.


LINKS



FORMULA

It can easily be proved that a(n) == 1 mod 4 for all n > 3.


EXAMPLE

13 is a member as 13 + 1, 13 + 2, 13 + 4, 13 + 9 are all squarefree.


MATHEMATICA

a[0] = 1; a[n_] := a[n] = Module[{t = Array[a, n, 0], k = a[n  1] + 1}, While[AnyTrue[t, ! SquareFreeQ[k + #] &], k++]; k]; Array[a, 100, 0] (* Amiram Eldar, Aug 21 2023 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



