login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction expansion of Sum_{k >= 1} 1/k^k.
2

%I #12 Aug 07 2024 22:39:18

%S 1,3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,1,9,3,1,1,18,1,1,29,4,1,

%T 5,2,167,1,62,4,2,1,3,3,27,1,9,1,46,1,3,2,2,1,1,3,2,10,73,1,11,1,2,1,

%U 1,18,1,4,1,4,6,1,4,4,1,6,1,1,1,2,1,7,8,4,1,3,1,4,28,2,1,6,2,10,3,1,2,2

%N Continued fraction expansion of Sum_{k >= 1} 1/k^k.

%H Jinyuan Wang, <a href="/A077178/b077178.txt">Table of n, a(n) for n = 0..9999</a>

%o (PARI) default(realprecision, 10^5); contfrac(suminf(k=1, k^-k)) \\ _Jinyuan Wang_, Mar 04 2020

%Y Cf. A073009 (decimal expansion).

%K nonn,cofr

%O 0,2

%A _Benoit Cloitre_, Nov 29 2002

%E Offset changed by _Andrew Howroyd_, Aug 07 2024