login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Initial terms of rows of A077168.
6

%I #16 Dec 13 2022 02:14:15

%S 1,2,4,7,11,15,20,26,33,41,50,60,71,83,96,110,125,141,158,176,195,215,

%T 236,258,281,305,330,356,383,411,440,470,501,533,566,600,635,671,708,

%U 746,785,825,866,908,951,995,1040,1086,1133,1181,1230,1280,1331,1383

%N Initial terms of rows of A077168.

%H G. C. Greubel, <a href="/A077169/b077169.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F For n>3, a(n) = (n^2-n+10)/2.

%F From _G. C. Greubel_, Jul 13 2017: (Start)

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 7.

%F G.f.: (1-x+x^2-x^5 + x^6)/(1-x)^3.

%F E.g.f.: (1/2)*(x^2 + 10)*exp(x) - 4 - 3*x + x^2 - x^3/6. (End)

%F Sum_{n>=0} 1/a(n) = 1177/840 + 2*Pi*tanh(sqrt(39)*Pi/2)/sqrt(39). - _Amiram Eldar_, Dec 13 2022

%t Join[{1, 2, 4, 7}, Table[(n^2 - n + 10)/2, {n, 4, 50}]] (* _G. C. Greubel_, Jul 13 2017 *)

%o (PARI) concat([1,2,4,7], for(n=4,50, print1((n^2 - n +10)/2, ", "))) \\ _G. C. Greubel_, Jul 13 2017

%Y Cf. A077168, A077170.

%K nonn,easy

%O 0,2

%A _Amarnath Murthy_, Nov 01 2002

%E More terms from _Sascha Kurz_, Feb 10 2003