Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 04 2023 01:37:10
%S 0,8,12,45,20,140,28,209,133,308,44,768,52,540,512,897,68,1485,76,
%T 1700,880,1196,92,3536,561,1620,1276,2992,116,5120,124,3713,1904,2660,
%U 1728,8137,148,3276,2560,7844,164,9072,172,6656,5508,4700,188,15120,1485
%N a(n) = A051612(n)*A065387(n) = sigma(n)^2-phi(n)^2, where A051612(n) = sigma(n) - phi(n) and A065387(n) = sigma(n) + phi(n).
%C If n is prime, then a(n) = 4n.
%H Antti Karttunen, <a href="/A077101/b077101.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A077099(n) * A077100(n). - _Antti Karttunen_, May 26 2017
%F From _Amiram Eldar_, Dec 04 2023: (Start)
%F a(n) = A072861(n) - A127473(n).
%F Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 5*zeta(3)/2 - Product_{p prime}(1 - (2*p-1)/p^3) = (5/2)*A002117 - A065464 = 2.576892... . (End)
%t Table[DivisorSigma[1,n]^2-EulerPhi[n]^2,{n,50}] (* _Harvey P. Dale_, Nov 08 2013 *)
%o (PARI) A077101(n) = (sigma(n)^2 - eulerphi(n)^2); \\ _Antti Karttunen_, May 26 2017
%Y Cf. A000010, A000203, A002117, A051612, A062354, A065387, A065464, A072861, A077099, A077100, A127473.
%K nonn,easy
%O 1,2
%A _Labos Elemer_, Nov 06 2002
%E Edited by _Dean Hickerson_, Nov 07 2002