Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 09 2025 13:20:22
%S 3,2,1,2,1,1,2,1,1,1,2,3,1,3,1,2,1,2,2,3,2,1,1,1,1,1,3,1,1,1,2,2,2,2,
%T 3,1,2,2,3,2,2,1,2,1,2,1,1,1,1,2,3,2,2,1,2,2,1,2,3,3,1,3,1,2,2,2,3,2,
%U 1,1,3,1,1,1,1,1,2,2,1,1,2,2,1,3,3,2,1,2,1,2,2,3,1,2,2,1,2,2,1,1,1,1,1,1,1
%N Quotients when sigma(k+1)/sigma(k) is an integer.
%H Seiichi Manyama, <a href="/A077089/b077089.txt">Table of n, a(n) for n = 1..500</a>
%F a(n) = sigma(A058072(n)+1)/sigma(A058072(n)). - _Seiichi Manyama_, Jan 16 2021
%e a(1) = sigma(2)/sigma(1) = 3/1 = 3.
%e a(2) = sigma(6)/sigma(5) = 12/6 = 2.
%e a(3) = sigma(15)/sigma(14) = 24/24 = 1.
%t Do[s=Mod[a=DivisorSigma[1, n+1], b=DivisorSigma[1, n]]; If[Equal[s, 0], Print[a/b]], {n, 1, 10000000}]
%t Select[#[[2]]/#[[1]]&/@Partition[DivisorSigma[1,Range[10^6]],2,1], IntegerQ] (* _Harvey P. Dale_, Dec 26 2015 *)
%Y Cf. A000203, A002961, A058072, A067081, A077086, A077087.
%K nonn,changed
%O 1,1
%A _Labos Elemer_, Oct 31 2002