login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)).
16

%I #59 Mar 27 2022 13:39:23

%S 3,8,17,32,54,57,100,145,177,320,368,512,593,945,1124,1649,2169,2530,

%T 4240,5392,6250,7073,8361,16580,18785,20412,23401,32993,60049,65792,

%U 69632,93312,94932,131361,178478,262468,268705,397585,423393,524649,533169

%N Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)).

%C Crandall & Pomerance refer to these numbers in reference to 2638^4405 + 4405^2638, which was then the largest known prime of this form. - _Alonso del Arte_, Apr 05 2006 [Comment amended by _N. J. A. Sloane_, Apr 06 2015]

%C Conjecture: For d > 11, 10^(d-1)+(d-1)^10 is the smallest (base ten) d-digit term. - _Hans Havermann_, May 21 2018

%C Conjecture from _Zhi-Wei Sun_, Feb 26 2022: (Start)

%C (i) For each n > 0, we have a(n) <= p+1 < a(n+1) for some prime p.

%C (ii) a(n) < p < a(n+1) for some prime p, except that the interval (a(5), a(6)) = (54, 57) contains no prime. (End)

%C A013499 \ {1} is the subsequence of terms of the form 2*n^n, n > 1. - _Bernard Schott_, Mar 26 2022

%D R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2005.

%H Hans Havermann, <a href="/A076980/b076980.txt">Table of n, a(n) for n = 1..5000</a> (terms 1..1001 from T. D. Noe)

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Leyland_number">Leyland number</a>.

%e a(9) = 177 because we can write 177 = 2^7 + 7^2.

%p N:= 10^7: # to get all terms <= N

%p A:= {3}:

%p for n from 2 to floor(N^(1/2)) do

%p for k from 2 do

%p a:= n^k + k^n;

%p if a > N then break fi;

%p A:= A union {a};

%p od

%p od:

%p A; # if using Maple 11 or earlier, uncomment the next line

%p # sort(convert(A,list)); # _Robert Israel_, Apr 13 2015

%t Take[Sort[Flatten[Table[x^y + y^x, {x, 2, 100}, {y, x, 100}]]], 42] (* _Alonso del Arte_, Apr 05 2006 *)

%t nn=10^50; n=1; Union[Reap[While[n++; num=2*n^n; num<nn, Sow[num]; k=n; While[k++; num=n^k+k^n; num<nn, Sow[num]]]][[2,1]]]

%Y Prime subset of this sequence, A094133.

%Y Cf. A013499.

%K nonn

%O 1,1

%A _Amarnath Murthy_, Oct 23 2002

%E More terms from _Benoit Cloitre_, Oct 24 2002

%E More terms from _Alonso del Arte_, Apr 05 2006