login
A076963
Lexicographically earliest increasing sequence of relatively prime numbers with nondecreasing number of divisors. a(1) = 1, tau(a(n+1)) >= tau(a(n)) and GCD(a(n),a(n+1)) = 1.
1
1, 2, 3, 4, 9, 10, 21, 22, 27, 28, 45, 52, 63, 64, 105, 128, 135, 136, 165, 182, 225, 256, 315, 352, 525, 544, 585, 608, 675, 704, 945, 1144, 1575, 2288, 2835, 2992, 4095, 5984, 5985, 7072, 7245, 7904, 8085, 9568, 9765, 10208, 11025, 11968, 12285, 23936, 25935
OFFSET
0,2
COMMENTS
It appears that a(n) is divisible by 2 iff n is odd, and by 3 iff n >= 2 is even. - Robert Israel, Jun 08 2024
LINKS
MAPLE
R:= 1: d:= 1: count:= 1: x:= 1:
for i from 2 while count < 80 do
if igcd(i, x) = 1 then
di:= numtheory:-tau(i);
if di >= d then x:= i; d:= di; R:= R, i; count:= count+1 fi
fi
od:
R; # Robert Israel, Jun 07 2024
CROSSREFS
Sequence in context: A127150 A256189 A098548 * A081871 A366913 A329573
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Oct 21 2002
EXTENSIONS
More terms from Sascha Kurz, Jan 22 2003
Definition clarified by Robert Israel, Jun 07 2024
STATUS
approved