|
|
A076949
|
|
Decimal expansion of c, the constant such that lim n -> infinity A003095(n)/c^(2^n) = 1.
|
|
9
|
|
|
1, 2, 2, 5, 9, 0, 2, 4, 4, 3, 5, 2, 8, 7, 4, 8, 5, 3, 8, 6, 2, 7, 9, 4, 7, 4, 9, 5, 9, 1, 3, 0, 0, 8, 5, 2, 1, 3, 2, 1, 2, 2, 9, 3, 2, 0, 9, 6, 9, 6, 6, 1, 2, 8, 2, 3, 1, 7, 7, 0, 0, 9, 0, 7, 2, 5, 5, 2, 3, 3, 9, 9, 7, 5, 2, 6, 5, 7, 3, 8, 0, 2, 1, 6, 7, 9, 1, 5, 4, 5, 2, 0, 4, 9, 9, 2, 8, 4, 2, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
1.2259024435287485386279474959130085213212293209696612823177009072552339975...
|
|
MATHEMATICA
|
S[n_]:= S[n]= If[n==1, Log[2]/2, S[n-1] + Log[1 + 1/A003095[n]^2]/2^n];
RealDigits[Exp[S[13]/2], 10, 120][[1]] (* G. C. Greubel, Nov 29 2022 *)
|
|
PROG
|
(Magma)
if n eq 0 then return 0;
end function;
function S(n)
if n eq 1 then return Log(2)/2;
else return S(n-1) + Log(1 + 1/A003095(n)^2)/2^n;
end if; return S;
end function;
SetDefaultRealField(RealField(120)); Exp(S(12)/2); // G. C. Greubel, Nov 29 2022
(SageMath)
@CachedFunction
@CachedFunction
def S(n): return log(2)/2 if (n==1) else S(n-1) + log(1 + 1/(A003095(n))^2)/2^n
numerical_approx( exp(S(12)/2), digits=120) # G. C. Greubel, Nov 29 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|