login
A076936
a(1) = 1; then the smallest number different from its predecessor such that the n-th partial product is an n-th power.
2
1, 4, 2, 32, 4, 256, 8, 2048, 16, 16384, 32, 131072, 64, 1048576, 128, 8388608, 256, 67108864, 512, 536870912, 1024, 4294967296, 2048, 34359738368, 4096, 274877906944, 8192, 2199023255552, 16384, 17592186044416, 32768
OFFSET
1,2
COMMENTS
Or "such that the geometric mean of the first n terms is an integer." (Without the "different from its predecessor" requirement, the trivial sequence 1,4,2,2,2,2,2,... would have resulted.)
FORMULA
From Robert Israel, Nov 27 2016: (Start)
a(n) = 2^A014682(n-1).
G.f.: x*(1+4*x-8*x^2-8*x^3)/(1-10*x^2+16*x^4). (End)
MAPLE
seq(op([2^k, 2^(3*k+2)]), k=0..20); # Robert Israel, Nov 27 2016
MATHEMATICA
CoefficientList[Series[x (1 + 4 x - 8 x^2 - 8 x^3)/(1 - 10 x^2 + 16 x^4), {x, 0, 31}], x] (* Michael De Vlieger, Nov 24 2017 *)
LinearRecurrence[{0, 10, 0, -16}, {1, 4, 2, 32}, 40] (* Harvey P. Dale, Mar 20 2024 *)
CROSSREFS
Sequence in context: A030447 A302369 A317899 * A344536 A348567 A303085
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Oct 19 2002
EXTENSIONS
More terms from Sam Alexander, Nov 15 2003
STATUS
approved