login
Coefficients of 3-point function in dimension 5 Y^1_2.
2

%I #16 Sep 11 2022 10:10:42

%S 7,1707797,510787745643,222548537108926490,113635631482486991647224

%N Coefficients of 3-point function in dimension 5 Y^1_2.

%C Zinger's paper contains the sequence that agrees with the initial terms given here, a(1)-a(4). It continues: 63340724462384110502639024265, 37325795060717360046547665187418254, 22857028298936684292245509537579343818647, 14395953469762596243721601709186933042635134584, 9263611884884554518268724722981763557936573405648178, 6062677702410680024315392235188823274104219383883410807999. - _Andrey Zabolotskiy_, Sep 11 2022

%H David R. Morrison, <a href="https://arxiv.org/abs/alg-geom/9609021">Mathematical Aspects of Mirror Symmetry</a>, arXiv:alg-geom/9609021, 1996; in Complex Algebraic Geometry (J. Kollár, ed.), IAS/Park City Math. Series, vol. 3, 1997, pp. 265-340.

%H Aleksey Zinger, <a href="https://doi.org/10.4310/CAG.2009.v17.n5.a4">Genus-Zero Two-Point Hyperplane Integrals in the Gromov-Witten Theory</a>, Communications in Analysis and Geometry, 17 (2009), 955-999; arXiv:<a href="https://arxiv.org/abs/0705.2725">0705.2725</a> [math.AG], 2007.

%Y Cf. A060345, A076909-A076917, A076923.

%K nonn,more

%O 0,1

%A _N. J. A. Sloane_, Nov 28 2002

%E Name corrected by _Andrey Zabolotskiy_, May 13 2020