login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of 6-point function in dimension 6.
2

%I #16 Sep 11 2022 10:11:12

%S 8,106975232,1672023727001600,26611692333081695092736,

%T 426129121674687823674948571136,6842148599241293047857339542861643776,

%U 110018992594692024449889564415904439556898816,1770551943055574073245974844490813198478975912902656,28508925683951911989843155602330000507452539542539447947264

%N Coefficients of 6-point function in dimension 6.

%H Brian R. Greene, David R. Morrison, and M. Ronen Plesser, <a href="https://doi.org/10.1007/BF02101657">Mirror Manifolds in Higher Dimension</a>, Commun. Math. Phys., 173 (1995), 559-598; arXiv:<a href="https://arxiv.org/abs/hep-th/9402119">hep-th/9402119</a>, 1994.

%H David R. Morrison, <a href="https://arxiv.org/abs/alg-geom/9609021">Mathematical Aspects of Mirror Symmetry</a>, in Complex Algebraic Geometry (J. Kollár, ed.), IAS/Park City Math. Series, vol. 3, 1997, pp. 265-340.

%Y Cf. A060345, A076909, A076910.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Nov 28 2002

%E a(6)-a(8) from Greene et al. added by _Andrey Zabolotskiy_, Sep 11 2022